Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Journal of Water, Sanitation and Hygiene for Development ; 13(1):39-49, 2023.
Article in English | ProQuest Central | ID: covidwho-2251704

ABSTRACT

In low- and middle-income countries, ensuring water, sanitation, and hygiene (WASH) facilities for households remains a major public health concern. Therefore, this study aimed to assess households' access to WASH services and associated factors in Ethiopia. A cross-sectional study was conducted among 16,650 and 8,663 households in the 2016 Ethiopian Demographic Health Survey (EDHS) and 2019 Mini-EDHS, respectively. The households were selected using a stratified two-stage cluster sampling technique. Multivariable logistic regression analysis was performed to identify factors associated with basic WASH services. Households' access to basic water services was 65.2% (95% CI: 64.5–65.9%) and 68.7% (95% CI: 68.01–69.4%) in the 2016 EDHS and 2019 Mini-EDHS, respectively. Only 25.9% (95% CI: 25.2–26.62%) in the 2016 EDHS and 27.5% (95% CI: 26.34–28.3%) in the 2019 Mini-EDHS households had access to basic sanitation services. Moreover, only 38% (95% CI: 37.25–38.8%) of households had access to basic hygiene services in the 2016 EDHS. Female-headed households, urban residents, having education, family members ≥7, presence of soaps or detergents, and having a better wealth index were the most likely to have access to basic WASH services. The findings in general suggest the need for effective WASH interventions.

2.
PLOS Water ; 1(6), 2022.
Article in English | ProQuest Central | ID: covidwho-2228077

ABSTRACT

Continuity of key water, sanitation, and hygiene (WASH) infrastructure and WASH practices—for example, hand hygiene—are among several critical community preventive and mitigation measures to reduce transmission of infectious diseases, including COVID-19 and other respiratory diseases. WASH guidance for COVID-19 prevention may combine existing WASH standards and new COVID-19 guidance. Many existing WASH tools can also be modified for targeted WASH assessments during the COVID-19 pandemic. We partnered with local organizations to develop and deploy tools to assess WASH conditions and practices and subsequently implement, monitor, and evaluate WASH interventions to mitigate COVID-19 in low- and middle-income countries in Latin America and the Caribbean and Africa, focusing on healthcare, community institution, and household settings and hand hygiene specifically. Employing mixed-methods assessments, we observed gaps in access to hand hygiene materials specifically despite most of those settings having access to improved, often onsite, water supplies. Across countries, adherence to hand hygiene among healthcare providers was about twice as high after patient contact compared to before patient contact. Poor or non-existent management of handwashing stations and alcohol-based hand rub (ABHR) was common, especially in community institutions. Markets and points of entry (internal or external border crossings) represent congregation spaces, critical for COVID-19 mitigation, where globally-recognized WASH standards are needed. Development, evaluation, deployment, and refinement of new and existing standards can help ensure WASH aspects of community mitigation efforts that remain accessible and functional to enable inclusive preventive behaviors.

3.
Water-Energy Nexus ; 2022.
Article in English | ScienceDirect | ID: covidwho-2096134

ABSTRACT

The provision of safe water and functioning waste management play key roles in preventing and combatting disease outbreaks such as the Covid-19 pandemic. Good water quality is needed for effective hygiene measures like washing hands as well as for lowering pathogen transmission. Almost all over the world, especially in developing countries, water is vulnerable and at high risk and surging insecurity with time. Effective water management, sanitation, and hygiene help to protect lives during the global COVID-19 pandemic. While sanitation and hygiene also disturb the quality and increase water consumption per capita to 40% comparatively and wastewater production in many developing countries. This rapid increase in water consumption puts direct pressure on water reservoirs and inadequate management of wastewater is also a serious threat to waterways, nowadays. Similarly, the quality of water bodies is significantly affected by the COVID-19 pandemic, but the risk of transmission of COVID-19 through sewerage systems is recorded as low. Hence, the current review paper is planned to highlight the main concerns directly linked with the frequent usage of detergents/soaps and alcohol-based hand sanitizers on water quality and the post-pandemic handwashing habits to overcome the COVID-19 spread also threatening the water reserve by high consumption along with more wastewater production with less water reuse efficiency and collectively the pressure on drinking water facilities. This review also focuses on the indirect influence of COVID-19 on water quality through technical interventions among COVID-19, water pollution;soaps/detergents, and hand sanitizer and the complete water management plan for water security and safety from policymakers to end users after the viral revolution briefly.

4.
Engineering Materials ; : 519-543, 2022.
Article in English | Scopus | ID: covidwho-2048062

ABSTRACT

In the early seventeenth century, smallpox was one of the most fearsome communicable diseases in the world. Lady Mary Montagu noted that the disease could be prevented by introducing liquid extracted from smallpox scabs from an infected patient into the skin of healthy individuals. This process, known as “variolation” was used in England and in USA until the first investigations by the English physician Edward Jenner appeared. Jenner created the vaccine for an animal poxvirus from the pustule formed by the vaccinia virus in the teats of cows, where the technique was essentially based on the idea that a virulent agent for animals could be attenuated in humans. In 1885, Louis Pasteur, through a fixed virus which was obtained by successive passages in the nervous tissue of rabbits with the dissecting action of potassium hydroxide, developed the vaccine against rabies, in which similar procedures were adopted in the development of several vaccines of live attenuated viruses. Already in the 1940s, a revolution occurred with the discovery that cells could be cultured in vitro and used as substrates for viral growth. Oral polio vaccine and vaccines against measles, rubella, mumps and chickenpox were made possible by selecting clones by passage in in vitro cell culture. Some RNA virus have segmented genomes that can be manipulated. Co-cultivation of two virus in cell culture with clone selection by plaque formation allows the isolation of virus with segments from both. This regrouping planned to create three main vaccines: live and inactivated influenza as well as one of two rotavirus vaccines. Another discovery in the late nineteenth century was that immunogenicity could be maintained as the substance contained in those killed by heat or chemical treatment. This type of inactivation was first applied to pathogens of typhoid fever, plague and cholera bacilli. In the twentieth century, chemical inactivation was also applied to a virus. The influenza vaccine was the first successful inactivated virus vaccine, developed against Polio and Hepatitis A. Besides, several vaccines consist of partially or fully purified proteins. Most of the inactivated flu vaccines used are created by growing the virus in embryonated eggs and then breaking down the entire virus with detergents. The viral hemagglutinin protein is purified to serve as the vaccine antigen, although other influenza virus components may be part of the final product. Early in the history of bacteriology, morphological studies and chemical analyzes showed that many pathogens were surrounded by a polysaccharide capsule and that antibodies against the capsule could promote phagocytosis. The first use of this information to create a vaccine was the development of the meningococcal polysaccharide vaccine. After years of study and development in bacterology, the scientific community faced the Covid-19 pandemic in 2020, marked by the race against time in the invention of effective vaccines against the SARS-CoV-2 virus. After all, most of vaccines take more than a decade to be formulated and, in the case of the vaccine against the new coronavirus, in less than a year, at least 34 candidate vaccines appeared in clinical analysis. New vaccine production techniques using DNA and RNA recombination techniques are being implemented in this race. In Brazil, the most widely distributed vaccines approved by Anvisa are AstraZeneca, CoronaVac and Pfizer-BioNTech. The AstraZeneca/Oxford vaccine is composed of a non-replicating viral vector, which consists of a defective chipamzee virus (adenovirus), with a segment of the SARS-CoV-2 genome, responsible for producing the structure present on the viral surface (protein S), being recognized by human cells, triggering an immune response against Coronavirus. The CoronaVac vaccine is composed by the inactivated SARS-CoV-2 virus, along with its complete structure. It is unable to multiply, although it can stimulate the response to produce antibodies. The Pfizer-BioNTech vaccine, on the other hand, consists of a formulated lipid nanoparticle of nucleoside-modified mRNA that encodes the pre-fusion peak glycoprotein of SARS-CoV-2. Despite the small amount of dose applications in Brazil, the Janssen vaccine has recently started its distribution in the country. This is the only vaccine, so far, with a single dose application. It is an adenovirus 26 (Ad26) vector vaccine that contains in its interior genetic material of the S protein contained in the surface spikes of SARS-CoV-2, and that stimulates, after application, the cellular responses of T CD4 + and T CD8 + antibodies. Here, we propose a detailed review of the entire history of vaccination, from Smallpox to Covid-19. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

5.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2023942

ABSTRACT

Liquid soaps are the basic cosmetics used to clean the skin of the hands. Frequent hand washing prevents viral contamination but may damage the skin's hydro-lipid layer, leading to various types of irritation. Therefore, four liquid soap formulas were developed with three amphoteric surfactants: Cocamidopropyl Betaine (LS II), CocamidopropylHydroxysultaine (LS III), and newly synthesized Evening PrimroseaamidopropylSulfobetaine (LS IV). We evaluated the skin irritating potential (zein number, bovine albumin test) and cytotoxicity (AlamarBlue™, Cell viability, and Cell cycle assays) on HaCaT cell line. We observed lower values of the zein number and bovine albumin tests after adding soaps with surfactants (the highest differences in LS IV) compared to the base soap (LS I). However, LS I and LS II did not differ in cytotoxic assays. Therefore, adding LS III and LS IV seems potentially more dangerous to the cells. However, it should be noted that cells were continuously exposed to liquid soaps for more than 24 h, so its cytotoxic effects after dermal use in humans may be unnoticeable. Concluding, results suggest that the newly synthesized LS IV should improve the safety of liquid hand washing soaps.


Subject(s)
Soaps , Zein , Animals , Cattle , Hand Disinfection/methods , Humans , Serum Albumin, Bovine , Soaps/pharmacology , Surface-Active Agents/pharmacology
6.
IOP Conference Series. Earth and Environmental Science ; 1057(1):012007, 2022.
Article in English | ProQuest Central | ID: covidwho-2017612

ABSTRACT

Soaps are used widely by humans in many aspects. Exclusively, the emergence of the SARS-Cov-2 virus made people wash their hands frequently to disinfect the virus to prevent virus infection. Soaps made of herbals possess constituents that goodness the skin as well to rejuvenate the mind and body factors. Dried leaves of Basil, Neem and Acalypha Indica, Aloe vera, and Hibiscus flower are used here to prepare homemade soap. The steam distillation process is an imperative process by which the oils are used from raw materials like dried leaves for the preparation of soaps. Extracts obtained from the herbal plants are used as additives in the preparation of soap that would be added besides the lye and other constituents. Lye preferred here is Sodium Hydroxide (NaOH) and the cast shapes utilized here in determining the soap shape are Elliptic and Rectangle. pH value, the total fatty matter is determined using respective methodologies, and the materials used in the preparation of soap are estimated using the accessible software called SoapCalc Recipe Calculator. Soaps made using the mentioned ingredients are safe and robust for cleaning the skin and hands.

7.
Odisha Review ; : 84-85, 2020.
Article in English | CAB Abstracts | ID: covidwho-1904975

ABSTRACT

This article talks about future water crisis management after the COVID-19 pandemic. Scenarios such as water use wastage due to hand washing and eutrophication with soap and detergent and water spray as sanitary measures in cities and metros were highlighted as examples and part of the crisis. More than this, climate change in tandem with hydrologic variability were viewed to have a profound impact on the water sector as well. Finally, the article predicts that in 2025, water shortages will be more prevalent due to rising demand and conflict, and how governments will find solutions to such issues moving forward.

8.
International Journal of Electrical and Computer Engineering ; 11(6):4825-4832, 2021.
Article in English | ProQuest Central | ID: covidwho-1837812

ABSTRACT

Since the COVID-19 pandemic, automated liquid dispensers have been increasingly developed to assist transmission prevention. However, data availability of automatic liquid dispenser mechanism's technical characteristics is not yet widely available. This causes frequent over or under design in its development. Therefore, we specifically measure push and pull forces engineering characteristics generated by the automatic liquid dispenser mechanism. A wire mechanism-based automatic liquid dispenser apparatus was used to experiment. A load-cell sensor was used to detect the force that occurs from a servo motor controlled by a microcontroller. The force data (push and pull) will be sent directly to the database server cloud with a recording frequency of every second. Three types of fluid treatment levels are used i.e. water, liquid soap, and hand sanitizer gel. Three types of fluid volume treatment levels used were 50 ml, 150 ml, and 250 ml. Each treatment level combination is carried out at the servo motors rotation steps 180°, 150°, 120°, 90°, 60°, and 30°. The results show that no significant differences were found in maximal forces required to release the water, liquid soap, and hand-sanitizer gel. It is also known that the volume of the fluid has a very significant effect on the amount of push and pull forces generated.

9.
Current Directions in Biomedical Engineering ; 7(2):430-432, 2021.
Article in English | Scopus | ID: covidwho-1602800

ABSTRACT

The risk of infection from contaminated surfaces has already been shown in several publications. Due to the increased demand for optimized infection control measures during the Corona pandemic, antimicrobial surface technologies have gained more an interest. Apart from many proofs of efficacy, there are only a few studies dealing with the durability of these surface coatings with regard to the material and the reprocessing measures. This work did therefore examine the impact of different materials and surface textures, as well as different detergents and disinfectants, on the durability of antimicrobial surface technologies. Differently structured materials (glass, wood, plastics, metal) and wallpaper bonded to plasterboard were coated with an TiO2Ag based antimicrobial coating (HECOSOL GmbH, Bamberg). These test samples are then used to perform abrasion tests with various cleaning and disinfecting agents and cloth systems (microfiber cloth, cotton cloth, foam cloth). The majority of the test samples in our experimental setup showed at least significant activity. According to our results, both the selection of cleaning and disinfection methods including wiping systems and the surface material have a major impact on the durability of antimicrobial coatings. In order to be able to come to conclusions about the long-term activity of these surface technologies, the effectiveness should be tested not only during the development phase, but also in the finished product and again after several reprocessing cycles in use. © 2021 by Walter de Gruyter Berlin/Boston.

10.
PeerJ ; 9: e12041, 2021.
Article in English | MEDLINE | ID: covidwho-1417300

ABSTRACT

Public Health Agencies worldwide (World Health Organization, United States Centers for Disease Prevention & Control, Chinese Center for Disease Control and Prevention, European Centre for Disease Prevention and Control, etc.) are recommending hand washing with soap and water for preventing the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. In this review, we have discussed the mechanisms of decontamination by soap and water (involving both removal and inactivation), described the contribution of the various components of formulated soaps to performance as cleansers and to pathogen inactivation, explained why adherence to recommended contact times is critical, evaluated the possible contribution of water temperature to inactivation, discussed the advantages of antimicrobial soaps vs. basic soaps, discussed the differences between use of soap and water vs. alcohol-based hand sanitizers for hand decontamination, and evaluated the limitations and advantages of different methods of drying hands following washing. While the paper emphasizes data applicable to SARS-CoV-2, the topics discussed are germane to most emerging and re-emerging enveloped and non-enveloped viruses and many other pathogen types.

11.
Infect Dis Health ; 26(1): 63-66, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065111

ABSTRACT

BACKGROUND: Non-therapeutic interventions such as practicing good hand hygiene continue to be the mainstay of protection from SARS-CoV-2 and other emerging respiratory viruses. METHODS: We have evaluated a range of commercially available personal care products including soaps, handwash liquids and alcohol-based hand sanitizers for antiviral efficacy against a clinical isolate of SARS-CoV-2 using internationally accepted standardized protocols at user-relevant contact time-points and product dilutions. RESULTS: All the tested products resulted in 3 to 4 log reduction of SARS-CoV-2 titer. CONCLUSION: Our data re-affirms recommendations by global public health authorities that proper hand hygiene can reduce SARS-CoV-2 viral load significantly which should likely limit spread of the contagion.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/prevention & control , Hand Disinfection/methods , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , Alcohols/pharmacology , Antiviral Agents/classification , Hand Sanitizers/pharmacology , Humans , Soaps/pharmacology
12.
Infect Dis Health ; 26(2): 152-155, 2021 05.
Article in English | MEDLINE | ID: covidwho-938185
13.
J Environ Chem Eng ; 9(2): 104754, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-927381

ABSTRACT

The Coronavirus disease-2019 (COVID-19) outbreak is caused by a highly pathogenic novel coronavirus (SARS-CoV-2). To date, there is no prescribed medicine for COVID-19. Frequent handwashing with soap and the use of alcohol-based hand sanitizers is recommended by WHO for hand hygiene and to prevent the spread of COVID-19. However, there are safety concerns associated with the use of soaps and alcohol-based hand sanitizers. Therefore, the review aims to highlight the health and environmental concerns associated with the frequent use of soaps/detergents and alcohol-based hand sanitizers amid COVID-19. The potential of some of the natural detergents and sanitizing agents as eco-friendly alternatives to petrochemical-based soaps and alcohol-based hand rubs for hand hygiene are discussed. The market of soaps and hand sanitizers is expected to grow in the coming years and therefore, future research should be directed to develop eco-friendly soaps and hand sanitizers for human and environmental safety.

14.
Sci Total Environ ; 745: 141053, 2020 Nov 25.
Article in English | MEDLINE | ID: covidwho-652009

ABSTRACT

Use of antimicrobials in the treatment and prevention of COVID-19, caused by novel coronavirus SARS-CoV-2, is on the rise. The increased use of antimicrobials can have serious consequences on the environment. Antibiotics have had a reasonable role in bacterial co-infections with regards to the management of COVID-19. However, recent evidences suggest that there has been injudicious prescription of antimicrobials. Moreover, a large number of people are self-medicating with antibiotics in a misguided attempt to protect themselves from the virus. This practice is especially prevalent in developing communities. Although common soaps are effective at inactivating enveloped viruses, such as the SARS-CoV-2, use of antibacterial products bearing biocides has increased during this pandemic. Current wastewater treatment techniques are unable to offer complete elimination of antibacterial biocides. These compounds can then accumulate in different environmental compartments thus, disrupting the functioning of native microbes. These microbes are involved in the biogeochemical cycling of elements and environmental remediation. In addition, the presence of antimicrobial elements in the environment can stimulate antimicrobial resistance. Concrete actions are needed to address this issue. Development of an antimicrobial policy specific for COVID-19 is urgently needed. Investments into improving wastewater infrastructure as well as public awareness is crucial. Moreover, global monitoring programs and multidisciplinary collaborations are required to understand the environmental impact of this pandemics.


Subject(s)
Anti-Infective Agents , Betacoronavirus , Coronavirus Infections , Drug Resistance, Microbial , Environment , Pandemics , Pneumonia, Viral , COVID-19 , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL